/home/bes3soft/bes3soft/Boss/7.0.2/dist/7.0.2/Generator/BesEvtGen/BesEvtGen-00-03-58/src/EvtGen/EvtGenBase/EvtDalitzReso.cc

Go to the documentation of this file.
00001 #include "EvtGenBase/EvtPatches.hh"
00002 /*****************************************************************************
00003  * Project: BaBar detector at the SLAC PEP-II B-factory
00004  * Package: EvtGenBase
00005  *    File: $Id: EvtDalitzReso.cc,v 1.1 2009/05/08 01:59:56 pingrg Exp $
00006  *
00007  * Description:
00008  *   Class to compute Dalitz amplitudes based on many models that cannot be
00009  *     handled with EvtResonance.
00010  *
00011  * Modification history:
00012  *   Jordi Garra Ticó     2008/07/03         File created
00013  *****************************************************************************/
00014 
00015 
00016 #include <assert.h>
00017 #include <cmath>
00018 #include <iostream>
00019 
00020 #include <stdlib.h>
00021 #include "EvtGenBase/EvtParticle.hh"
00022 #include "EvtGenBase/EvtGenKine.hh"
00023 #include "EvtGenBase/EvtPDL.hh"
00024 #include "EvtGenBase/EvtReport.hh"
00025 #include "EvtGenBase/EvtMatrix.hh"
00026 #include "EvtGenBase/EvtDalitzReso.hh"
00027 
00028 #include "EvtGenBase/EvtdFunction.hh"
00029 #include "EvtGenBase/EvtCyclic3.hh"
00030 
00031 #define PRECISION ( 1.e-3 )
00032 
00033 using EvtCyclic3::Index;
00034 using EvtCyclic3::Pair;
00035 
00036 
00037 // single Breit-Wigner
00038 EvtDalitzReso::EvtDalitzReso(const EvtDalitzPlot& dp, Pair pairAng, Pair pairRes, 
00039                              EvtSpinType::spintype spin, double m0, double g0, NumType typeN) 
00040   : _dp(dp),
00041     _pairAng(pairAng),
00042     _pairRes(pairRes),
00043     _spin(spin),
00044     _typeN(typeN),
00045     _m0(m0),_g0(g0),
00046     _massFirst(dp.m(first(pairRes))),_massSecond(dp.m(second(pairRes))),
00047     _m0_mix(-1.),_g0_mix(0.),_delta_mix(0.),_amp_mix(0.,0.),
00048     _g1(-1.),_g2(-1.),_coupling2(Undefined),
00049     _kmatrix_index(-1),_fr12prod(0.,0.),_fr13prod(0.,0.),_fr14prod(0.,0.),_fr15prod(0.,0.),_s0prod(0.),
00050     _a(0.),_r(0.),_Blass(0.),_phiB(0.),_R(0.),_phiR(0.)
00051 {
00052   _vb = EvtTwoBodyVertex(_m0,_dp.m(EvtCyclic3::other(_pairRes)),_dp.bigM(),_spin); 
00053   _vd = EvtTwoBodyVertex(_massFirst,_massSecond,_m0,_spin);
00054   _vb.set_f( 0.0 ); // Default values for Blatt-Weisskopf factors.
00055   _vd.set_f( 1.5 );
00056   assert(_typeN != K_MATRIX && _typeN != K_MATRIX_I && _typeN != K_MATRIX_II);  // single BW cannot be K-matrix
00057 }
00058 
00059 
00060 // Breit-Wigner with electromagnetic mass mixing
00061 EvtDalitzReso::EvtDalitzReso(const EvtDalitzPlot& dp, Pair pairAng, Pair pairRes, 
00062                              EvtSpinType::spintype spin, double m0, double g0, NumType typeN,
00063                              double m0_mix, double g0_mix, double delta_mix, EvtComplex amp_mix) 
00064   : _dp(dp),
00065     _pairAng(pairAng),
00066     _pairRes(pairRes),
00067     _spin(spin),
00068     _typeN(typeN),
00069     _m0(m0),_g0(g0),
00070     _massFirst(dp.m(first(pairRes))),_massSecond(dp.m(second(pairRes))),
00071     _m0_mix(m0_mix),_g0_mix(g0_mix),_delta_mix(delta_mix),_amp_mix(amp_mix),
00072     _g1(-1.),_g2(-1.),_coupling2(Undefined),
00073     _kmatrix_index(-1),_fr12prod(0.,0.),_fr13prod(0.,0.),_fr14prod(0.,0.),_fr15prod(0.,0.),_s0prod(0.),
00074     _a(0.),_r(0.),_Blass(0.),_phiB(0.),_R(0.),_phiR(0.)
00075 {
00076   _vb = EvtTwoBodyVertex(_m0,_dp.m(EvtCyclic3::other(_pairRes)),_dp.bigM(),_spin); 
00077   _vd = EvtTwoBodyVertex(_massFirst,_massSecond,_m0,_spin);
00078   _vb.set_f( 0.0 ); // Default values for Blatt-Weisskopf factors.
00079   _vd.set_f( 1.5 );
00080   // single BW (with electromagnetic mixing) cannot be K-matrix
00081   assert(_typeN != K_MATRIX && _typeN != K_MATRIX_I && _typeN != K_MATRIX_II);
00082 }
00083 
00084 // coupled Breit-Wigner
00085 EvtDalitzReso::EvtDalitzReso(const EvtDalitzPlot& dp, Pair pairAng, Pair pairRes, 
00086                              EvtSpinType::spintype spin, double m0, NumType typeN, double g1, double g2, CouplingType coupling2)
00087   : _dp(dp),
00088     _pairAng(pairAng),
00089     _pairRes(pairRes),
00090     _spin(spin),
00091     _typeN(typeN),
00092     _m0(m0),_g0(-1.),
00093     _massFirst(dp.m(first(pairRes))),_massSecond(dp.m(second(pairRes))),
00094     _m0_mix(-1.),_g0_mix(0.),_delta_mix(0.),_amp_mix(0.,0.),
00095     _g1(g1),_g2(g2),_coupling2(coupling2),
00096     _kmatrix_index(-1),_fr12prod(0.,0.),_fr13prod(0.,0.),_fr14prod(0.,0.),_fr15prod(0.,0.),_s0prod(0.),
00097     _a(0.),_r(0.),_Blass(0.),_phiB(0.),_R(0.),_phiR(0.)
00098 {
00099   _vb = EvtTwoBodyVertex(_m0,_dp.m(EvtCyclic3::other(_pairRes)),_dp.bigM(),_spin);   
00100   _vd = EvtTwoBodyVertex(_massFirst,_massSecond,_m0,_spin);
00101   _vb.set_f( 0.0 ); // Default values for Blatt-Weisskopf factors.
00102   _vd.set_f( 1.5 );
00103   assert(_coupling2 != Undefined);
00104   assert(_typeN != K_MATRIX && _typeN != K_MATRIX_I && _typeN != K_MATRIX_II); // coupled BW cannot be K-matrix
00105   assert(_typeN != LASS);     // coupled BW cannot be LASS
00106   assert(_typeN != NBW);      // for coupled BW, only relativistic BW 
00107 }
00108 
00109 
00110 // K-Matrix (A&S)
00111 EvtDalitzReso::EvtDalitzReso(const EvtDalitzPlot& dp, Pair pairRes, std::string nameIndex, NumType typeN,
00112                              EvtComplex fr12prod, EvtComplex fr13prod, EvtComplex fr14prod, EvtComplex fr15prod, double s0prod) 
00113   : _dp(dp),
00114     _pairRes(pairRes),
00115     _typeN(typeN),
00116     _m0(0.),_g0(0.),
00117     _massFirst(dp.m(first(pairRes))),_massSecond(dp.m(second(pairRes))),
00118     _m0_mix(-1.),_g0_mix(0.),_delta_mix(0.),_amp_mix(0.,0.),
00119     _g1(-1.),_g2(-1.),_coupling2(Undefined),
00120     _kmatrix_index(-1),_fr12prod(fr12prod),_fr13prod(fr13prod),_fr14prod(fr14prod),_fr15prod(fr15prod),_s0prod(s0prod),
00121     _a(0.),_r(0.),_Blass(0.),_phiB(0.),_R(0.),_phiR(0.)
00122 {
00123   assert(_typeN==K_MATRIX || _typeN==K_MATRIX_I || _typeN==K_MATRIX_II);
00124   _spin=EvtSpinType::SCALAR;
00125   if (nameIndex=="Pole1") _kmatrix_index=1;
00126   else if (nameIndex=="Pole2") _kmatrix_index=2;
00127   else if (nameIndex=="Pole3") _kmatrix_index=3;
00128   else if (nameIndex=="Pole4") _kmatrix_index=4;
00129   else if (nameIndex=="Pole5") _kmatrix_index=5;
00130   else if (nameIndex=="f11prod") _kmatrix_index=6;
00131   else assert(0);
00132 }
00133 
00134 
00135 // LASS parameterization
00136 EvtDalitzReso::EvtDalitzReso(const EvtDalitzPlot& dp, Pair pairRes, 
00137                              double m0, double g0, double a, double r, double B, double phiB, double R, double phiR) 
00138   : _dp(dp),
00139     _pairRes(pairRes),
00140     _typeN(LASS),
00141     _m0(m0),_g0(g0),
00142     _massFirst(dp.m(first(pairRes))),_massSecond(dp.m(second(pairRes))),
00143     _m0_mix(-1.),_g0_mix(0.),_delta_mix(0.),_amp_mix(0.,0.),
00144     _g1(-1.),_g2(-1.),_coupling2(Undefined),
00145     _kmatrix_index(-1),_fr12prod(0.,0.),_fr13prod(0.,0.),_fr14prod(0.,0.),_fr15prod(0.,0.),_s0prod(0.),
00146     _a(a),_r(r),_Blass(B),_phiB(phiB),_R(R),_phiR(phiR)
00147 {
00148   _spin=EvtSpinType::SCALAR;
00149   _vd = EvtTwoBodyVertex(_massFirst,_massSecond,_m0,_spin);
00150   _vd.set_f( 1.5 ); // Default values for Blatt-Weisskopf factors.
00151 }
00152 
00153 
00154 
00155 EvtDalitzReso::EvtDalitzReso(const EvtDalitzReso& other) 
00156   : _dp(other._dp),
00157     _pairAng(other._pairAng),
00158     _pairRes(other._pairRes),
00159     _spin(other._spin),
00160     _typeN(other._typeN),
00161     _m0(other._m0),_g0(other._g0),
00162     _vb(other._vb),_vd(other._vd),
00163     _massFirst(other._massFirst),_massSecond(other._massSecond),
00164     _m0_mix(other._m0_mix),_g0_mix(other._g0_mix),_delta_mix(other._delta_mix),_amp_mix(other._amp_mix),
00165     _g1(other._g1),_g2(other._g2),_coupling2(other._coupling2),
00166     _kmatrix_index(other._kmatrix_index),
00167     _fr12prod(other._fr12prod),_fr13prod(other._fr13prod),_fr14prod(other._fr14prod),_fr15prod(other._fr15prod),
00168     _s0prod(other._s0prod),
00169     _a(other._a),_r(other._r),_Blass(other._Blass),_phiB(other._phiB),_R(other._R),_phiR(other._phiR)
00170 {}
00171 
00172 
00173 EvtDalitzReso::~EvtDalitzReso()
00174 {}
00175 
00176 
00177 EvtComplex EvtDalitzReso::evaluate(const EvtDalitzPoint& x) 
00178 {
00179   double m = sqrt(x.q(_pairRes));
00180 
00181   // do use always hash table (speed up fitting)
00182   if (_typeN==K_MATRIX || _typeN==K_MATRIX_I || _typeN==K_MATRIX_II)
00183     return Fvector( m*m, _kmatrix_index );
00184 
00185   if (_typeN==LASS)
00186     return lass(m*m);
00187 
00188   EvtComplex amp(1.0,0.0);
00189 
00190   if (_dp.bigM() != x.bigM()) _vb = EvtTwoBodyVertex(_m0,_dp.m(EvtCyclic3::other(_pairRes)),x.bigM(),_spin); 
00191   EvtTwoBodyKine vb(m,x.m(EvtCyclic3::other(_pairRes)),x.bigM());
00192   EvtTwoBodyKine vd(_massFirst,_massSecond,m);   
00193 
00194   EvtComplex prop(0,0);
00195   if (_typeN==NBW) {
00196     prop = propBreitWigner(_m0,_g0,m);
00197   } else if (_typeN==GAUSS_CLEO || _typeN==GAUSS_CLEO_ZEMACH) {
00198     prop = propGauss(_m0,_g0,m);
00199   } else {
00200     if (_coupling2==Undefined) {  
00201       // single BW
00202       double g = (_g0<=0. || _vd.pD()<=0.)? -_g0 : _g0*_vd.widthFactor(vd);  // running width
00203       if (_typeN==GS_CLEO || _typeN==GS_CLEO_ZEMACH) {
00204         // Gounaris-Sakurai (GS)
00205         assert(_massFirst==_massSecond);
00206         prop = propGounarisSakurai(_m0,fabs(_g0),_vd.pD(),m,g,vd.p());
00207       } else {
00208         // standard relativistic BW
00209         prop = propBreitWignerRel(_m0,g,m);
00210       }
00211     } else {    
00212       // coupled width BW
00213       EvtComplex G1,G2;
00214       switch (_coupling2) { 
00215       case PicPic: {
00216         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00217         static double mPic = EvtPDL::getMass( EvtPDL::getId( "pi+" ) );
00218         G2 = _g2*_g2*psFactor(mPic,mPic,m);
00219         break;
00220       }
00221       case PizPiz: {
00222         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00223         static double mPiz = EvtPDL::getMass( EvtPDL::getId( "pi0" ) );
00224         G2 = _g2*_g2*psFactor(mPiz,mPiz,m);
00225         break;
00226       }
00227       case PiPi: {
00228         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00229         static double mPic = EvtPDL::getMass( EvtPDL::getId( "pi+" ) );
00230         static double mPiz = EvtPDL::getMass( EvtPDL::getId( "pi0" ) );
00231         G2 = _g2*_g2*psFactor(mPic,mPic,mPiz,mPiz,m);
00232         break;
00233       }
00234       case KcKc: {
00235         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00236         static double mKc = EvtPDL::getMass( EvtPDL::getId( "K+" ) );
00237         G2 = _g2*_g2*psFactor(mKc,mKc,m);
00238         break;
00239       }
00240       case KzKz: {
00241         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00242         static double mKz = EvtPDL::getMass( EvtPDL::getId( "K0" ) );
00243         G2 = _g2*_g2*psFactor(mKz,mKz,m);
00244         break;
00245       }
00246       case KK: {
00247         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00248         static double mKc = EvtPDL::getMass( EvtPDL::getId( "K+" ) );
00249         static double mKz = EvtPDL::getMass( EvtPDL::getId( "K0" ) );
00250         G2 = _g2*_g2*psFactor(mKc,mKc,mKz,mKz,m);
00251         break;
00252       }
00253       case EtaPic: {
00254         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00255         static double mEta = EvtPDL::getMass( EvtPDL::getId( "eta" ) );
00256         static double mPic = EvtPDL::getMass( EvtPDL::getId( "pi+" ) );
00257         G2 = _g2*_g2*psFactor(mEta,mPic,m);
00258         break;
00259       }
00260       case EtaPiz: {
00261         G1 = _g1*_g1*psFactor(_massFirst,_massSecond,m);
00262         static double mEta = EvtPDL::getMass( EvtPDL::getId( "eta" ) );
00263         static double mPiz = EvtPDL::getMass( EvtPDL::getId( "pi0" ) );
00264         G2 = _g2*_g2*psFactor(mEta,mPiz,m);
00265         break;
00266       }
00267       case PicPicKK: {
00268         static double mPic = EvtPDL::getMass( EvtPDL::getId( "pi+" ) );
00269         //G1 = _g1*_g1*psFactor(mPic,mPic,m);
00270         G1 = _g1*psFactor(mPic,mPic,m);
00271         static double mKc = EvtPDL::getMass( EvtPDL::getId( "K+" ) );
00272         static double mKz = EvtPDL::getMass( EvtPDL::getId( "K0" ) );
00273         //G2 = _g2*_g2*psFactor(mKc,mKc,mKz,mKz,m);
00274         G2 = _g2*psFactor(mKc,mKc,mKz,mKz,m);
00275         break;
00276       }
00277       default:
00278         std::cout << "EvtDalitzReso:evaluate(): PANIC, wrong coupling2 state." << std::endl;
00279         assert(0);
00280         break;
00281       }
00282       // calculate standard couple BW propagator
00283       if (_coupling2 != WA76)
00284         prop = _g1*propBreitWignerRelCoupled(_m0,G1,G2,m);
00285     } 
00286   }
00287   amp *= prop;
00288 
00289   // Compute form-factors (Blatt-Weisskopf penetration factor)
00290   amp *= _vb.formFactor(vb);  
00291   amp *= _vd.formFactor(vd);  
00292 
00293   // Compute numerator (angular distribution)
00294   amp *= numerator(x,vb,vd);  
00295 
00296   // Compute electromagnetic mass mixing factor
00297   if (_m0_mix>0.) {
00298     EvtComplex prop_mix;
00299     if (_typeN==NBW) {
00300       prop_mix = propBreitWigner(_m0_mix,_g0_mix,m);
00301     } else {
00302       assert(_g1<0.); // running width only
00303       double g_mix = _g0_mix*_vd.widthFactor(vd);
00304       prop_mix = propBreitWignerRel(_m0_mix,g_mix,m);
00305     }
00306     amp *= mixFactor(prop,prop_mix);
00307   }
00308 
00309   return amp;
00310 }
00311 
00312 
00313 EvtComplex EvtDalitzReso::psFactor(double & ma, double & mb, double& m)
00314 {
00315   if (m>(ma+mb)) {
00316     EvtTwoBodyKine vd(ma,mb,m);
00317     return EvtComplex(0,2*vd.p()/m);
00318   } else { 
00319     // analytical continuation
00320     double s = m*m;
00321     double phaseFactor_analyticalCont = -0.5*(sqrt(4*ma*ma/s-1)+sqrt(4*mb*mb/s-1)); 
00322     return EvtComplex(phaseFactor_analyticalCont,0);
00323   }
00324 }
00325 
00326 
00327 EvtComplex EvtDalitzReso::psFactor(double & ma1,double & mb1, double & ma2, double & mb2, double& m)
00328 {
00329   return 0.5*(psFactor(ma1,mb1,m)+psFactor(ma2,mb2,m));
00330 }
00331 
00332 
00333 EvtComplex EvtDalitzReso::propGauss(const double& m0, const double& s0, const double& m) 
00334 {
00335   // Gaussian
00336   double gauss = 1./sqrt(EvtConst::twoPi)/s0*exp(-(m-m0)*(m-m0)/2./(s0*s0));
00337   return EvtComplex(gauss,0.);
00338 }
00339 
00340 
00341 EvtComplex EvtDalitzReso::propBreitWigner(const double& m0, const double& g0, const double& m) 
00342 {
00343   // non-relativistic BW
00344   return sqrt(g0/EvtConst::twoPi)/(m-m0-EvtComplex(0.0,g0/2.));
00345 }
00346 
00347 
00348 EvtComplex EvtDalitzReso::propBreitWignerRel(const double& m0, const double& g0, const double& m) 
00349 {
00350   // relativistic BW with real width
00351   return 1./(m0*m0-m*m-EvtComplex(0.,m0*g0));
00352 }
00353 
00354 
00355 
00356 EvtComplex EvtDalitzReso::propBreitWignerRel(const double& m0, const EvtComplex& g0, const double& m) 
00357 {
00358   // relativistic BW with complex width
00359   return 1./(m0*m0-m*m-EvtComplex(0.,m0)*g0);
00360 }
00361 
00362 
00363 EvtComplex EvtDalitzReso::propBreitWignerRelCoupled(const double& m0, const EvtComplex& g1, const EvtComplex& g2, const double& m)
00364 {
00365   // relativistic coupled BW
00366   return 1./(m0*m0-m*m-(g1+g2));
00367 }
00368 
00369 EvtComplex EvtDalitzReso::propGounarisSakurai(const double& m0, const double& g0, const double& k0,
00370                                             const double& m, const double& g, const double& k) 
00371 {
00372   // Gounaris-Sakurai parameterization of pi+pi- P wave. PRD, Vol61, 112002. PRL, Vol21, 244.
00373   // Expressions taken from BAD637v4, after fixing the imaginary part of the BW denominator: i M_R Gamma_R(s) --> i sqrt(s) Gamma_R(s) 
00374   return (1.+GS_d(m0,k0)*g0/m0)/(m0*m0-m*m-EvtComplex(0.,m*g)+GS_f(m0,g0,k0,m,k));
00375 }
00376 
00377 
00378 inline double EvtDalitzReso::GS_f(const double& m0, const double& g0, const double& k0, const double& m, const double& k) 
00379 {
00380   // m: sqrt(s)
00381   // m0: nominal resonance mass
00382   // k: momentum of pion in resonance rest frame (at m)
00383   // k0: momentum of pion in resonance rest frame (at nominal resonance mass)
00384   return g0*m0*m0/(k0*k0*k0)*( k*k*(GS_h(m,k)-GS_h(m0,k0)) + (m0*m0-m*m)*k0*k0*GS_dhods(m0,k0) );
00385 }
00386 
00387 inline double EvtDalitzReso::GS_h(const double& m, const double& k) 
00388 {return 2./EvtConst::pi*k/m*log((m+2.*k)/(2.*_massFirst)) ;}
00389 
00390 inline double EvtDalitzReso::GS_dhods(const double& m0, const double& k0)  
00391 {return GS_h(m0,k0)*( 0.125/(k0*k0) - 0.5/(m0*m0) ) + 0.5/(EvtConst::pi*m0*m0) ;}
00392 
00393 inline double EvtDalitzReso::GS_d(const double& m0, const double& k0) 
00394 {return 3./EvtConst::pi*_massFirst*_massFirst/(k0*k0)*log((m0+2.*k0)/(2.*_massFirst)) + 
00395    m0/(2.*EvtConst::pi*k0) - _massFirst*_massFirst*m0/(EvtConst::pi*k0*k0*k0) ;}
00396 
00397 
00398 EvtComplex EvtDalitzReso::numerator(const EvtDalitzPoint& x, const EvtTwoBodyKine& vb, const EvtTwoBodyKine& vd) 
00399 {
00400   EvtComplex ret(0.,0.);
00401 
00402   // Non-relativistic Breit-Wigner
00403   if(NBW == _typeN) {
00404     ret = angDep(x);
00405   }
00406 
00407   // Standard relativistic Zemach propagator
00408   else if(RBW_ZEMACH == _typeN) {
00409     ret = _vd.phaseSpaceFactor(vd,EvtTwoBodyKine::AB)*angDep(x);
00410   }
00411 
00412   // Standard relativistic Zemach propagator
00413   else if(RBW_ZEMACH2 == _typeN) {
00414     ret = _vd.phaseSpaceFactor(vd,EvtTwoBodyKine::AB)*_vb.phaseSpaceFactor(vb,EvtTwoBodyKine::AB)*angDep(x);
00415     if(_spin == EvtSpinType::VECTOR) {
00416       ret *= -4.;
00417     } else if(_spin == EvtSpinType::TENSOR) {
00418       ret *= 16./3.;
00419     } else if(_spin != EvtSpinType::SCALAR)
00420       assert(0);
00421   }
00422 
00423   // Kuehn-Santamaria normalization:
00424   else if(RBW_KUEHN == _typeN) {
00425     ret = _m0*_m0 * angDep(x);
00426   }  
00427 
00428   // CLEO amplitude 
00429   else if( ( RBW_CLEO        == _typeN ) || ( GS_CLEO           == _typeN ) ||
00430            ( RBW_CLEO_ZEMACH == _typeN ) || ( GS_CLEO_ZEMACH    == _typeN ) ||
00431            ( GAUSS_CLEO      == _typeN ) || ( GAUSS_CLEO_ZEMACH == _typeN)) {
00432 
00433     Index iA = other(_pairAng);           // A = other(BC)
00434     Index iB = common(_pairRes,_pairAng); // B = common(AB,BC)
00435     Index iC = other(_pairRes);           // C = other(AB)
00436     
00437     double M = x.bigM();
00438     double mA = x.m(iA);
00439     double mB = x.m(iB);
00440     double mC = x.m(iC);
00441     double qAB = x.q(combine(iA,iB));
00442     double qBC = x.q(combine(iB,iC));
00443     double qCA = x.q(combine(iC,iA));
00444 
00445     double M2 = M*M;
00446     double m02 = ((RBW_CLEO_ZEMACH == _typeN)||(GS_CLEO_ZEMACH == _typeN)||(GAUSS_CLEO_ZEMACH == _typeN))?  qAB : _m0*_m0;
00447     double mA2 = mA*mA;
00448     double mB2 = mB*mB;
00449     double mC2 = mC*mC;
00450     
00451     if (_spin == EvtSpinType::SCALAR) ret = EvtComplex(1.,0.);
00452     else if(_spin == EvtSpinType::VECTOR) {
00453       ret = qCA - qBC + (M2 - mC2)*(mB2 - mA2)/m02;
00454     } else if(_spin == EvtSpinType::TENSOR) {
00455       double x1 = qBC - qCA + (M2 - mC2)*(mA2 - mB2)/m02;       
00456       double x2 = M2 - mC2;      
00457       double x3 = qAB - 2*M2 - 2*mC2 + x2*x2/m02;      
00458       double x4 = mA2 - mB2;
00459       double x5 = qAB - 2*mB2 - 2*mA2 + x4*x4/m02;
00460       ret = x1*x1 - x3*x5/3.;
00461     } else assert(0);
00462   }
00463   
00464   return ret;
00465 }
00466 
00467 
00468 double EvtDalitzReso::angDep(const EvtDalitzPoint& x)  
00469 { 
00470   // Angular dependece for factorizable amplitudes  
00471   // unphysical cosines indicate we are in big trouble
00472   double cosTh = x.cosTh(_pairAng,_pairRes);  // angle between common(reso,ang) and other(reso)
00473   if(fabs(cosTh) > 1.) {
00474     report(INFO,"EvtGen") << "cosTh " << cosTh << std::endl; 
00475     assert(0);
00476   }
00477   
00478   // in units of half-spin
00479   return EvtdFunction::d(EvtSpinType::getSpin2(_spin),2*0,2*0,acos(cosTh));
00480 }
00481 
00482 
00483 EvtComplex EvtDalitzReso::mixFactor(EvtComplex prop, EvtComplex prop_mix) 
00484 {
00485   double Delta = _delta_mix*(_m0+_m0_mix);
00486   return 1/(1-Delta*Delta*prop*prop_mix)*(1+_amp_mix*Delta*prop_mix);
00487 }
00488 
00489 
00490 
00491 EvtComplex EvtDalitzReso::Fvector( double s, int index )
00492 {
00493   assert(index>=1 && index<=6);
00494 
00495   //Define the complex coupling constant
00496   //The convection is as follow
00497   //i=0 --> pi+ pi-
00498   //i=1 --> KK
00499   //i=2 --> 4pi
00500   //i=3 --> eta eta
00501   //i=4 --> eta eta'
00502   //The first index is the resonace-pole index
00503       
00504   double g[5][5]; // Coupling constants. The first index is the pole index. The second index is the decay channel
00505   double ma[5];   // Pole masses. The unit is in GeV
00506 
00507   int solution = (_typeN==K_MATRIX)? 3 : (    (_typeN==K_MATRIX_I)? 1 : ( (_typeN==K_MATRIX_II)? 2 : 0 )    ) ;
00508   if (solution==0) { std::cout << "EvtDalitzReso::Fvector() error. Kmatrix solution incorrectly chosen ! " << std::endl; abort(); } 
00509 
00510   if (solution == 3 ) {
00511 
00512     // coupling constants
00513     //pi+pi- channel
00514     g[0][0]=0.22889;
00515     g[1][0]=0.94128;
00516     g[2][0]=0.36856;
00517     g[3][0]=0.33650;
00518     g[4][0]=0.18171;
00519     //K+K- channel
00520     g[0][1]=-0.55377;
00521     g[1][1]=0.55095;
00522     g[2][1]=0.23888;
00523     g[3][1]=0.40907;
00524     g[4][1]=-0.17558;
00525     //4pi channel
00526     g[0][2]=0;
00527     g[1][2]=0;
00528     g[2][2]=0.55639;
00529     g[3][2]=0.85679;
00530     g[4][2]=-0.79658;
00531     //eta eta channel
00532     g[0][3]=-0.39899;
00533     g[1][3]=0.39065;
00534     g[2][3]=0.18340;
00535     g[3][3]=0.19906;
00536     g[4][3]=-0.00355;
00537     //eta eta' channel
00538     g[0][4]=-0.34639;
00539     g[1][4]=0.31503;
00540     g[2][4]=0.18681;
00541     g[3][4]=-0.00984;
00542     g[4][4]=0.22358;
00543 
00544     // Pole masses
00545     ma[0]=0.651;      
00546     ma[1]=1.20360;
00547     ma[2]=1.55817;
00548     ma[3]=1.21000;
00549     ma[4]=1.82206;
00550 
00551   } else if (solution == 1) { // solnI.txt 
00552     
00553     // coupling constants
00554     //pi+pi- channel
00555     g[0][0]=0.31896;
00556     g[1][0]=0.85963;
00557     g[2][0]=0.47993;
00558     g[3][0]=0.45121;
00559     g[4][0]=0.39391;
00560     //K+K- channel
00561     g[0][1]=-0.49998;
00562     g[1][1]=0.52402;
00563     g[2][1]=0.40254;
00564     g[3][1]=0.42769;
00565     g[4][1]=-0.30860;
00566     //4pi channel
00567     g[0][2]=0;
00568     g[1][2]=0;
00569     g[2][2]=1.0;
00570     g[3][2]=1.15088;
00571     g[4][2]=0.33999;
00572     //eta eta channel
00573     g[0][3]=-0.21554;
00574     g[1][3]=0.38093;
00575     g[2][3]=0.21811;
00576     g[3][3]=0.22925;
00577     g[4][3]=0.06919;
00578     //eta eta' channel
00579     g[0][4]=-0.18294;
00580     g[1][4]=0.23788;
00581     g[2][4]=0.05454;
00582     g[3][4]=0.06444;
00583     g[4][4]=0.32620;
00584 
00585     // Pole masses
00586     ma[0]=0.7369;
00587     ma[1]=1.24347;
00588     ma[2]=1.62681;
00589     ma[3]=1.21900;
00590     ma[4]=1.74932;
00591 
00592   } else if (solution == 2) { // solnIIa.txt 
00593     
00594     // coupling constants
00595     //pi+pi- channel
00596     g[0][0]=0.26014;
00597     g[1][0]=0.95289;
00598     g[2][0]=0.46244;
00599     g[3][0]=0.41848;
00600     g[4][0]=0.01804;
00601     //K+K- channel
00602     g[0][1]=-0.57849;
00603     g[1][1]=0.55887;
00604     g[2][1]=0.31712;
00605     g[3][1]=0.49910;
00606     g[4][1]=-0.28430;
00607     //4pi channel
00608     g[0][2]=0;
00609     g[1][2]=0;
00610     g[2][2]=0.70340;
00611     g[3][2]=0.96819;
00612     g[4][2]=-0.90100;
00613     //eta eta channel
00614     g[0][3]=-0.32936;
00615     g[1][3]=0.39910;
00616     g[2][3]=0.22963;
00617     g[3][3]=0.24415;
00618     g[4][3]=-0.07252;
00619     //eta eta' channel
00620     g[0][4]=-0.30906;
00621     g[1][4]=0.31143;
00622     g[2][4]=0.19802;
00623     g[3][4]=-0.00522;
00624     g[4][4]=0.17097;
00625 
00626     // Pole masses
00627     ma[0]=0.67460;
00628     ma[1]=1.21094;
00629     ma[2]=1.57896;
00630     ma[3]=1.21900;
00631     ma[4]=1.86602;
00632   } 
00633 
00634   //Now define the K-matrix pole
00635   double  rho1sq,rho2sq,rho4sq,rho5sq;
00636   EvtComplex rho[5];
00637   double f[5][5];
00638 
00639   //Initalize the mass of the resonance
00640   double mpi=0.13957;
00641   double mK=0.493677;     //using charged K value
00642   double meta=0.54775;    //using PDG value
00643   double metap=0.95778;   //using PDG value
00644     
00645   //Initialize the matrix to value zero
00646   EvtComplex K[5][5];
00647   for(int i=0;i<5;i++) { 
00648     for(int j=0;j<5;j++) {
00649       K[i][j]=EvtComplex(0,0);
00650       f[i][j]=0;
00651     }
00652   }
00653 
00654   //Input the _f[i][j] scattering data
00655   double s_scatt=0.0 ; 
00656   if (solution == 3) 
00657     s_scatt=-3.92637; 
00658   else if (solution == 1) 
00659     s_scatt= -5.0 ;
00660   else if (solution == 2) 
00661     s_scatt= -5.0 ; 
00662   double sa=1.0;
00663   double sa_0=-0.15;
00664   if (solution == 3) {
00665     f[0][0]=0.23399;  // f^scatt
00666     f[0][1]=0.15044;
00667     f[0][2]=-0.20545;
00668     f[0][3]=0.32825;
00669     f[0][4]=0.35412;
00670   }else if (solution == 1) {
00671     f[0][0]=0.04214;  // f^scatt
00672     f[0][1]=0.19865;
00673     f[0][2]=-0.63764;
00674     f[0][3]=0.44063;
00675     f[0][4]=0.36717;
00676   }else if (solution == 2) {
00677     f[0][0]=0.26447;  // f^scatt
00678     f[0][1]=0.10400;
00679     f[0][2]=-0.35445;
00680     f[0][3]=0.31596;
00681     f[0][4]=0.42483;
00682   }   
00683   f[1][0]=f[0][1];
00684   f[2][0]=f[0][2];
00685   f[3][0]=f[0][3];
00686   f[4][0]=f[0][4];
00687 
00688   //Now construct the phase-space factor
00689   //For eta-eta' there is no difference term
00690   rho1sq = 1. - pow( mpi + mpi, 2 ) / s;   //pi+ pi- phase factor
00691   if( rho1sq >= 0 )
00692     rho[ 0 ] = EvtComplex( sqrt( rho1sq ), 0 );
00693   else
00694     rho[ 0 ] = EvtComplex( 0, sqrt( -rho1sq ) );  
00695 
00696   rho2sq = 1. - pow( mK + mK, 2 ) / s;
00697   if( rho2sq >= 0 )
00698     rho[ 1 ] = EvtComplex( sqrt( rho2sq ), 0 );
00699   else
00700     rho[ 1 ] = EvtComplex( 0, sqrt( -rho2sq ) );
00701 
00702   //using the A&S 4pi phase space Factor:
00703   //Shit, not continue
00704   if( s <= 1 )
00705     {
00706       double real   = 1.2274 + .00370909 / ( s * s ) - .111203 / s - 6.39017 * s + 16.8358*s*s - 21.8845*s*s*s + 11.3153*s*s*s*s;
00707       double cont32 = sqrt(1.0-(16.0*mpi*mpi));
00708       rho[ 2 ] = EvtComplex( cont32 * real, 0 );
00709     }
00710   else
00711     rho[ 2 ] = EvtComplex( sqrt( 1. - 16. * mpi * mpi / s ), 0 );
00712 
00713   rho4sq = 1. - pow( meta + meta, 2 ) / s;
00714   if( rho4sq >= 0 )
00715     rho[ 3 ] = EvtComplex( sqrt( rho4sq ), 0 );
00716   else
00717     rho[ 3 ] = EvtComplex( 0, sqrt( -rho4sq ) );
00718 
00719   rho5sq = 1. - pow( meta + metap, 2 ) / s;
00720   if( rho5sq >= 0 )
00721     rho[ 4 ] = EvtComplex( sqrt( rho5sq ), 0 );
00722   else
00723     rho[ 4 ] = EvtComplex( 0, sqrt( -rho5sq ) );
00724 
00725   double smallTerm = 1; // Factor to prevent divergences.
00726 
00727   // Check if some pole may arise problems.
00728   for ( int pole = 0; pole < 5; pole++ )
00729     if ( fabs( pow( ma[ pole ], 2 ) - s ) < PRECISION )
00730       smallTerm = pow( ma[ pole ], 2 ) - s;
00731 
00732   //now sum all the pole
00733   //equation (3) in the E791 K-matrix paper
00734   for(int i=0;i<5;i++) { 
00735     for(int j=0;j<5;j++) {  
00736       for (int pole_index=0;pole_index<5;pole_index++) {
00737         double A=g[pole_index][i]*g[pole_index][j];
00738         double B=ma[pole_index]*ma[pole_index]-s;
00739 
00740         if ( fabs( B ) < PRECISION )
00741           K[ i ][ j ] += EvtComplex( A    , 0 );
00742         else
00743           K[ i ][ j ] += EvtComplex( A / B, 0 ) * smallTerm;
00744       }
00745     }
00746   }
00747 
00748   //now add the SVT part
00749   for(int i=0;i<5;i++) { 
00750     for(int j=0;j<5;j++) {
00751       double C=f[i][j]*(1.0-s_scatt);
00752       double D=(s-s_scatt);
00753       K[ i ][ j ] += EvtComplex( C / D, 0 ) * smallTerm;
00754     }
00755   }
00756 
00757   //Fix the bug in the FOCUS paper
00758   //Include the Alder zero term:
00759   for(int i=0;i<5;i++) { 
00760     for(int j=0;j<5;j++) {
00761       double E=(s-(sa*mpi*mpi*0.5))*(1.0-sa_0);
00762       double F=(s-sa_0);    
00763       K[ i ][ j ] *= EvtComplex(E/F,0);
00764     }
00765   }
00766 
00767   //This is not correct!
00768   //(1-ipK) != (1-iKp)
00769   static EvtMatrix< EvtComplex > mat;
00770   mat.setRange( 5 ); // Try to do in only the first time. DEFINE ALLOCATION IN CONSTRUCTOR.
00771 
00772   for ( int row = 0; row < 5; row++ )
00773     for ( int col = 0; col < 5; col++ )
00774       mat( row, col ) = ( row == col ) * smallTerm - EvtComplex( 0., 1. ) * K[ row ][ col ] * rho[ col ];
00775 
00776 
00777   EvtMatrix< EvtComplex >* matInverse = mat.inverse();  //The 1st row of the inverse matrix. This matrix is {(I-iKp)^-1}_0j
00778   vector< EvtComplex > U1j;
00779   for ( int j = 0; j < 5; j++ )
00780     U1j.push_back( (*matInverse)[ 0 ][ j ] );
00781 
00782   delete matInverse;
00783 
00784   //this calculates final F0 factor
00785   EvtComplex value( 0, 0 );
00786   if (index<=5) {
00787     //this calculates the beta_idx Factors
00788     for(int j=0;j<5;j++) {        // sum for 5 channel
00789       EvtComplex top    = U1j[j]*g[index-1][j];
00790       double     bottom = ma[index-1]*ma[index-1]-s;
00791 
00792       if ( fabs( bottom ) < PRECISION )
00793         value += top;
00794       else
00795         value += top / bottom * smallTerm;
00796     }
00797   } else {
00798     //this calculates fprod Factors
00799     value += U1j[0];
00800     value += U1j[1]*_fr12prod;
00801     value += U1j[2]*_fr13prod;
00802     value += U1j[3]*_fr14prod;
00803     value += U1j[4]*_fr15prod;
00804 
00805     value *= (1-_s0prod)/(s-_s0prod) * smallTerm;
00806   }
00807 
00808   return value;
00809 }
00810 
00811 
00812 //replace Breit-Wigner with LASS
00813 EvtComplex EvtDalitzReso::lass(double s)
00814 {
00815   EvtTwoBodyKine vd(_massFirst,_massSecond, sqrt(s));
00816   double q = vd.p();
00817   double GammaM = _g0*_vd.widthFactor(vd);  // running width;
00818 
00819   //calculate the background phase motion
00820   double cot_deltaB = 1.0/(_a*q) + 0.5*_r*q;
00821   double deltaB = atan( 1.0/cot_deltaB);
00822   double totalB = deltaB + _phiB ;
00823 
00824   //calculate the resonant phase motion
00825   double deltaR = atan((_m0*GammaM/(_m0*_m0 - s)));
00826   double totalR = deltaR + _phiR ;
00827 
00828   //sum them up
00829   EvtComplex  bkgB,resT;
00830   bkgB = EvtComplex(_Blass*sin(totalB),0)*EvtComplex(cos(totalB),sin(totalB));
00831   resT = EvtComplex(_R*sin(deltaR),0)*EvtComplex(cos(totalR),sin(totalR))*EvtComplex(cos(2*totalB),sin(2*totalB));
00832   EvtComplex T = bkgB + resT;      
00833 
00834   return T;
00835 }
00836 
00837 
00838 
00839 

Generated on Tue Nov 29 23:12:12 2016 for BOSS_7.0.2 by  doxygen 1.4.7