/home/bes3soft/bes3soft/Boss/7.0.2/dist/7.0.2/Reconstruction/TrackUtil/TrackUtil-00-00-08/src/Lpar.cxx

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 //
00003 // Package:     <package>
00004 // Module:      Lpar
00005 // 
00006 // Description: <one line class summary>
00007 //
00008 // Implimentation:
00009 //     <Notes on implimentation>
00010 //
00011 // Author:      KATAYAMA Nobuhiko
00012 // Created:     Fri Feb  6 10:21:49 JST 1998
00013 // $Id: Lpar.cxx,v 1.2 2008/06/30 08:46:52 max Exp $
00014 
00015 #include <iostream>
00016 
00017 // system include files
00018 #include <cmath>
00019 // user include files
00020 #include "TrackUtil/Lpar.h"
00021 
00022 //
00023 // constants, enums and typedefs
00024 //
00025 
00026 //
00027 // static data member definitions
00028 //
00029 
00030 //const double Lpar::BELLE_ALPHA(-333.564095);
00031 
00032 //
00033 // constructors and destructor
00034 //
00035 // Lpar::Lpar(double x1, double y1, double x2, double y2, double x3, double y3) {
00036 //   circle(x1, y1, x2, y2, x3, y3);
00037 // }
00038 Lpar::Cpar::Cpar(const Lpar&l) {
00039   m_cu = l.kappa();
00040   if (l.alpha() !=0 && l.beta() !=0)
00041     m_fi = atan2(l.alpha(), -l.beta());
00042   else m_fi = 0;
00043   if(m_fi<0) m_fi+=2*M_PI;
00044   m_da = 2 * l.gamma()/ (1 + sqrt (1 + 4 * l.kappa() * l.gamma()));
00045   m_cfi = cos(m_fi);
00046   m_sfi = sin(m_fi);
00047 }
00048 
00049 // Lpar::Lpar( const Lpar& )
00050 // {
00051 // }
00052 
00053 Lpar::~Lpar()
00054 {
00055 }
00056 
00057 //
00058 // assignment operators
00059 //
00060 // const Lpar& Lpar::operator=( const Lpar& )
00061 // {
00062 // }
00063 
00064 //
00065 // comparison operators
00066 //
00067 // bool Lpar::operator==( const Lpar& ) const
00068 // {
00069 // }
00070 
00071 // bool Lpar::operator!=( const Lpar& ) const
00072 // {
00073 // }
00074 
00075 //
00076 // member functions
00077 //
00078 void Lpar::circle(double x1, double y1, double x2, double y2,
00079                   double x3, double y3) {
00080   double a;
00081   double b;
00082   double c;
00083   double delta = (x1-x2)*(y1-y3) - (y1-y2)*(x1-x3);
00084   if(delta==0) {
00085     //
00086     // three points are on a line.
00087     //
00088     m_kappa = 0;
00089     double r12sq = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2);
00090     if (r12sq>0) {
00091       double r12 = sqrt(r12sq);
00092       m_beta = -(x1-x2)/r12;
00093       m_alpha = (y1-y2)/r12;
00094       m_gamma = - (m_alpha*x1+m_beta*y1);
00095     } else {
00096       double r13sq = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3);
00097       if (r13sq>0) {
00098         double r13 = sqrt(r13sq);
00099         m_beta = -(x1-x3)/r13;
00100         m_alpha = (y1-y3)/r13;
00101         m_gamma = - (m_alpha*x3+m_beta*y3);
00102       } else {
00103         double r23sq = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3);
00104         if (r23sq>0) {
00105           double r23 = sqrt(r23sq);
00106           m_beta = -(x2-x3)/r23;
00107           m_alpha = (y2-y3)/r23;
00108           m_gamma = - (m_alpha*x3+m_beta*y3);
00109         } else {
00110           m_alpha = 1;
00111           m_beta = 0;
00112           m_gamma = 0;
00113         }
00114       }
00115     }
00116   } else {
00117     double r1sq = x1 * x1 + y1 * y1;
00118     double r2sq = x2 * x2 + y2 * y2;
00119     double r3sq = x3 * x3 + y3 * y3;
00120     a = 0.5 * (  (y1-y3)*(r1sq-r2sq) - (y1-y2)*(r1sq-r3sq)) / delta;
00121     b = 0.5 * (- (x1-x3)*(r1sq-r2sq) + (x1-x2)*(r1sq-r3sq)) / delta;
00122     double csq = (x1-a)*(x1-a) + (y1-b)*(y1-b);
00123     c = sqrt(csq);
00124     double csq2 = (x2-a)*(x2-a) + (y2-b)*(y2-b);
00125     double csq3 = (x3-a)*(x3-a) + (y3-b)*(y3-b);
00126     m_kappa = 1 / (2 * c);
00127     m_alpha = - 2 * a * m_kappa;
00128     m_beta = - 2 * b * m_kappa;
00129     m_gamma = (a*a + b*b - c*c) * m_kappa;
00130   }
00131 }
00132 
00133 HepMatrix Lpar::dldc() const
00134 #ifdef BELLE_OPTIMIZED_RETURN
00135 return vret(3,4);
00136 {
00137 #else
00138 {
00139   HepMatrix vret(3,4);
00140 #endif
00141   Cpar cp(*this);
00142   double xi = cp.xi();
00143   double s = cp.sfi();
00144   double c = cp.cfi();
00145   vret(1,1) = 2*cp.da()*s;
00146   vret(1,2) = -2*cp.da()*c;
00147   vret(1,3) = cp.da()*cp.da();
00148   vret(1,4) = 1;
00149   vret(2,1) = xi*c;
00150   vret(2,2) = xi*s;
00151   vret(2,3) = 0;
00152   vret(2,4) = 0;
00153   vret(3,1) = 2*cp.cu()*s;
00154   vret(3,2) = -2*cp.cu()*c;
00155   vret(3,3) = xi;
00156   vret(3,4) = 0;
00157   return vret;
00158 }
00159 
00160 bool Lpar::xy(double r, double &x, double &y, int dir) const {
00161   double t_kr2g = kr2g(r);
00162   double t_xi2 = xi2();
00163   double ro = r * r * t_xi2 - t_kr2g * t_kr2g;
00164   if ( ro < 0  ) return false;
00165   double rs = sqrt(ro);
00166   if(dir==0) {
00167     x = (- m_alpha * t_kr2g  -  m_beta * rs) / t_xi2;
00168     y = (- m_beta  * t_kr2g  + m_alpha * rs) / t_xi2;
00169   } else {
00170     x = (- m_alpha * t_kr2g  +  m_beta * rs) / t_xi2;
00171     y = (- m_beta  * t_kr2g  - m_alpha * rs) / t_xi2;
00172   }
00173   return true;
00174 }
00175 
00176 double Lpar::x(double r) const {
00177   double t_x, t_y;
00178   xy(r, t_x, t_y);
00179   return t_x;
00180 }
00181 
00182 double Lpar::y(double r) const {
00183   double t_x, t_y;
00184   xy(r, t_x, t_y);
00185   return t_y;
00186 }
00187 
00188 double Lpar::phi(double r,int dir) const {
00189   double x, y;
00190   if (!xy(r,x,y, dir)) return -1;
00191   double p = atan2(y,x);
00192   if (p<0) p += (2*M_PI);
00193   return p;
00194 }
00195 
00196 void Lpar::xhyh(double x, double y, double &xh, double &yh) const {
00197   double ddm = dr(x, y);
00198   if (ddm==0) {
00199     xh = x;
00200     yh = y;
00201     return;
00202   }
00203   double kdp1 = 1 + 2 * kappa() * ddm;
00204   xh = x - ddm * ( 2 * kappa() * x + alpha())/kdp1;
00205   yh = y - ddm * ( 2 * kappa() * y + beta())/kdp1;
00206 }
00207 
00208 double Lpar::s(double x, double y) const {
00209   double xh, yh, xx, yy;
00210   xhyh(x, y, xh, yh);
00211   double fk = fabs(kappa());
00212   if (fk==0) return 0;
00213   yy = 2 * fk * ( alpha() * yh - beta() * xh);
00214   xx = 2 * kappa() * ( alpha() * xh + beta() * yh ) + xi2();
00215   double sp = atan2(yy, xx);
00216   if (sp<0) sp += (2*M_PI);
00217   return sp / 2 / fk;
00218 }
00219 
00220 double Lpar::s(double r, int dir) const {
00221   double d0 = da();
00222   if (fabs(r)<fabs(d0)) return -1;
00223   double b = fabs(kappa()) * sqrt((r*r-d0*d0)/(1 + 2 * kappa() * d0));
00224   if (fabs(b)>1) return -1;
00225   if(dir==0)return asin(b)/fabs(kappa());
00226   return (M_PI-asin(b))/fabs(kappa());
00227 }
00228 
00229 HepVector Lpar::center() const
00230 #ifdef BELLE_OPTIMIZED_RETURN
00231 return v(3);
00232 {
00233 #else
00234 {
00235   HepVector v(3);
00236 #endif
00237   v(1) = xc();
00238   v(2) = yc();
00239   v(3) = 0;
00240   return(v);
00241 }
00242 
00243 int intersect(const Lpar&lp1, const Lpar&lp2, HepVector&v1, HepVector&v2) {
00244   HepVector cen1(lp1.center());
00245   HepVector cen2(lp2.center());
00246   double dx = cen1(1)-cen2(1);
00247   double dy = cen1(2)-cen2(2);
00248   double dc = sqrt(dx*dx+dy*dy);
00249   if(dc<fabs(0.5/lp1.kappa())+fabs(0.5/lp2.kappa())) {
00250     double a1 = std::sqrt(lp1.alpha()) + std::sqrt(lp1.beta());
00251     double a2 = std::sqrt(lp2.alpha()) + std::sqrt(lp2.beta());
00252     double a3 = lp1.alpha()*lp2.alpha() + lp1.beta()*lp2.beta();
00253     double det = lp1.alpha()*lp2.beta() - lp1.beta()*lp2.alpha();
00254     if(fabs(det)>1e-12) {
00255       double c1 = a2 * std::sqrt(lp1.kappa()) + a1 * std::sqrt(lp2.kappa()) -
00256         2.0 * a3 * lp1.kappa() * lp2.kappa();
00257       if(c1!=0) {
00258         double cinv = 1.0 / c1;
00259         double c2 = std::sqrt(a3) - 0.5 * (a1 + a2) - 2.0 * a3 *
00260           (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
00261         double c3 = a2 * std::sqrt(lp1.gamma()) + a1 * std::sqrt(lp2.gamma()) -
00262           2.0 * a3 * lp1.gamma() * lp2.gamma();
00263         double root = std::sqrt(c2) - 4.0 * c1 * c3;
00264         if (root>=0) {
00265           root = sqrt(root);
00266           double rad2[2];
00267           rad2[0] = 0.5 * cinv * (-c2 - root);
00268           rad2[1] = 0.5 * cinv * (-c2 + root);
00269           double ab1 = -(lp2.beta() * lp1.gamma() - lp1.beta() * lp2.gamma());
00270           double ab2 = (lp2.alpha() * lp1.gamma() - lp1.alpha() * lp2.gamma());
00271           double ac1 = -(lp2.beta() * lp1.kappa() - lp1.beta() * lp2.kappa());
00272           double ac2 = (lp2.alpha() * lp1.kappa() - lp1.alpha() * lp2.kappa());
00273           double dinv = 1.0 / det;
00274           v1(1) = dinv * (ab1 + ac1 * rad2[0]);
00275           v1(2) = dinv * (ab2 + ac2 * rad2[0]);
00276           v1(3) = 0;
00277           v2(1) = dinv * (ab1 + ac1 * rad2[1]);
00278           v2(2) = dinv * (ab2 + ac2 * rad2[1]);
00279           v2(3) = 0;
00280           double d1 = lp1.d(v1(1),v1(2));
00281           double d2 = lp2.d(v1(1),v1(2));
00282           double d3 = lp1.d(v2(1),v2(2));
00283           double d4 = lp2.d(v2(1),v2(2));
00284           double r = sqrt(rad2[0]);
00285           Lpar::Cpar cp1(lp1);
00286           Lpar::Cpar cp2(lp2);
00287           for(int j=0;j<2;j++) {
00288             double s1,s2;
00289             if(j==0) {
00290               s1 = lp1.s(v1(1),v1(2));
00291               s2 = lp2.s(v1(1),v1(2));
00292             } else {
00293               s1 = lp1.s(v2(1),v2(2));
00294               s2 = lp2.s(v2(1),v2(2));
00295             }
00296             double phi1 = cp1.fi() + 2 * cp1.cu() * s1;
00297             double phi2 = cp2.fi() + 2 * cp2.cu() * s2;
00298             double f = (1 + 2 * cp1.cu() * cp1.da()) *
00299               (1 + 2 * cp2.cu() * cp2.da()) * cos(cp1.fi()-cp2.fi());
00300             f -= 2 * (lp1.gamma() * lp2.kappa() + lp2.gamma() * lp1.kappa());
00301             double cosphi12 = f;
00302           }
00303           return 2;
00304         }
00305       }
00306     }
00307   }
00308   return 0;
00309 }
00310 
00311 //
00312 // const member functions
00313 //
00314 
00315 //
00316 // static member functions
00317 //
00318         
00319 std::ostream& operator<<(std::ostream &o, Lpar &s) {
00320   return o << " al=" << s.m_alpha << " be=" << s.m_beta
00321            << " ka=" << s.m_kappa << " ga=" << s.m_gamma;
00322 }
00323 

Generated on Tue Nov 29 23:13:24 2016 for BOSS_7.0.2 by  doxygen 1.4.7